Wavelet Analysis of Variance for Time Series with Missing Values

نویسندگان

  • Debashis Mondal
  • Donald B. Percival
چکیده

The wavelet variance is a scale-based decomposition of the process variance for a time series and has been used to analyze, for example, time deviations in atomic clocks, variations in soil properties in agricultural plots, accumulation of snow fields in the polar regions and marine atmospheric boundary layer turbulence. We propose two new unbiased estimators of the wavelet variance when the observed time series is ‘gappy,’ i.e., is sampled at regular intervals, but certain observations are missing. We deduce the large sample properties of these estimators and discuss methods for determining an approximate confidence interval for the wavelet variance. We apply our proposed methodology to series of gappy observations related to atmospheric pressure data and Nile River minima.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wavelet analysis of GRACE K-band range rate measurements related to Urmia Basin

Space-borne gravity data from Gravity Recovery and Climate Experiment (GRACE), as well as some other in situ and remotely sensed satellite data have been used to determine water storage changes in Lake Urmia Basin (Iran). As usual, the GRACE products are derived from precise inter-satellite range rate measurements converted to different formats such as spherical harmonic coefficients and equiva...

متن کامل

Wavelet Variance Analysis for Gappy Data

The wavelet variance is a scale-based decomposition of the process variance for a time series and has been used to analyze, for example, time deviations in atomic clocks, variations in soil properties in agricultural plots, accumulation of snow fields in the polar regions and marine atmospheric boundary layer turbulence. We propose two new unbiased estimators of the wavelet variance when the ob...

متن کامل

Video Subject Inpainting: A Posture-Based Method

Despite recent advances in video inpainting techniques, reconstructing large missing regions of a moving subject while its scale changes remains an elusive goal. In this paper, we have introduced a scale-change invariant method for large missing regions to tackle this problem. Using this framework, first the moving foreground is separated from the background and its scale is equalized. Then, a ...

متن کامل

Declouding Time Series of Landsat Data

Novel schemes based on multiresolution transforms were introduced to pre-process long time series of Landsat data. Particularly, removal of clouds and their shadows was tackled. We applied the product of wavelet scales to generate binary masks of corrupted observations, the robust smoother-cleaner wavelets to remove outliers in the data, and the wavelet shrinkage to estimate new values. Cloud c...

متن کامل

Missing data imputation in multivariable time series data

Multivariate time series data are found in a variety of fields such as bioinformatics, biology, genetics, astronomy, geography and finance. Many time series datasets contain missing data. Multivariate time series missing data imputation is a challenging topic and needs to be carefully considered before learning or predicting time series. Frequent researches have been done on the use of diffe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008